Package: guri (via r-universe)

October 24, 2024
Title ~!guri_: Unified Format Manager for Research Journals
Version 0.1.0.9002

Description ~guri_ (Gestor Unificado de formatos para Revistas de
Investigacion / Unified Format Manager for Research Journals)
facilitates the generation of final documents for scientific
journals from documents obtained in the 'proofreading’ stage.
The proposal seeks to solve the difficulties of some academic
journals in generating final documents in different formats in
a consistent way and without generating duplicated processes.
It also takes into account that many scientific journals use
docx documents as the basis of their workflows.

License CC BY-NC-SA 4.0 + file LICENSE

URL https://github.com/estedeahora/guri,
https://estedeahora.github.io/guri/

BugReports https://github.com/estedeahora/guri/issues
Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Imports cli, dplyr, fs, pandoc, purrr, readxl, rmarkdown, rstudioapi,
stringr, tinytex, utils, xml2

Depends R (>=2.10)

LazyData true

Repository https://estedeahora.r-universe.dev

RemoteUrl https://github.com/estedeahora/guri
RemoteRef HEAD

RemoteSha b4c3e24b27b646aa041£f47c0f784a2d17¢719a49

https://github.com/estedeahora/guri
https://estedeahora.github.io/guri/
https://github.com/estedeahora/guri/issues

2 CREDIT _to_CSV
Contents
CREDIT_to_CSV e e 2
guri_appendixX e e 3
guri_article 3
guri_clean_files 4
guri_config_journal L 4
GUI_CONVETL o vt bt e e e e e e e e e e e e e e e e 5
guri_doi_batch L 5
guri_installo 6
guri_list_articles 7
guri_make_journal 7
QUIL_OULPULS o oo e e e 9
guri_to_md e e e e e 10
Index 12
CREDIT_to_CSV Convert the ’xlsx’ file with the credit information to csv format.
Description
Convert the *xIsx’ file with the credit information to csv format.
Usage
CREDIT_to_CSV(art_path, art_id, verbose)
Arguments
art_path A string with the path to the article folder.
art_id A string with the article id.
verbose Logical. Specifies whether to display verbose output (default TRUE).
Value

Invisible TRUE.

guri_appendix 3

guri_appendix Make markdown appendix from docx documents

Description

Make markdown appendix from docx documents

Usage

guri_appendix(art_path, art_id)

Arguments
art_path A string with the path to the article folder, where the appendix files are located.
art_id A string with the article id, used to identify the appendix files. The appendix
files should be named as "art_appl.docx", "art_app2.docx", etc.
Value

A character vector containing the names of the converted Markdown files.

guri_article Generate the output files for individual article.

Description

Generate the output files for individual article.

Usage

guri_article(art_path, art_dir, art_id, verbose = TRUE, clean_files = TRUE)

Arguments
art_path A string with the path to the article folder.
art_dir A string with the article folder name.
art_id A string with the article id.
verbose Logical. Specifies whether to display verbose output (default TRUE).

clean_files Logical. Should the temporary files be deleted and reordered in folders after the
creation of the final files?. Primarily for debugging purposes (default is TRUE).

Value

Invisible TRUE.

4 guri_config_journal

guri_clean_files Clean and reorganize article folder, moving temporary (auxiliary), log
and output files.

Description

Clean and reorganize article folder, moving temporary (auxiliary), log and output files.

Usage

guri_clean_files(art_path, art_id, verbose)

Arguments

art_path A string with the path to the article folder.
art_id A string with the article id.
verbose Logical. Specifies whether to display verbose output (default TRUE).

Value

Invisible TRUE.

See Also

guri_outputs

guri_config_journal Create the journal configuration files

Description

Create the journal configuration files in _config. If csl_name is given, it also places the corre-
sponding csl in the configuration folder.

Usage
guri_config_journal(journal_folder = NULL, csl_name = NULL, force = FALSE)

Arguments
journal_folder A string with the path to the journal. If NULL (default), the working folder is
used. For journal repositories, this must be provided.

csl_name A string with the CSL’s name (without its extension). See: https://github.com/citation-
style-language/styles

force Logical. Should it be overwritten if a configuration folder already exists (De-
fault: FALSE)?

guri_convert 5

Value
Invisible TRUE.
guri_convert Converts the corrected manuscript between the formats required by
~lguri_.
Description

This function converts a document using ~!guri_. It takes the path to the article, the article id,
the desired output format, and an optional verbose flag. It performs the conversion by calling the
rmarkdown::pandoc_convert function.

Usage

guri_convert(art_path, art_id, output, verbose = TRUE)

Arguments

art_path A string with the path to the article folder.

art_id A string with the article id.

output A string. The desired output format (see).

verbose Logical. Specifies whether to display verbose output (default TRUE).
Value

Invisible TRUE

guri_doi_batch Generate a doi_batch xml file for Crossref deposit

Description

Generate a doi_batch xml file for Crossref deposit

Usage

guri_doi_batch(list_art, path_issue)

Arguments

list_art A data.frame with the article information as returned by guri_list_articles. It
must contain the following columns: id (character), with the article id; and
path (character), with the path to the article.

path_issue A string with the path to the issue folder.

6 guri_install

Details

The doi_batch xml file is saved in the doi_register folder, inside the issue folder.

The doi_batch xml file searches each of the article folders for the art[id]_crossref.xml file
(inside the ’_temp’ folder), and uses the information in these files to create a unified doi_batch
xml file (each article is saved as a <journal_article> element in the xml file).

In adition to the doi_batch xml file, this function also creates a text file with the information of the
articles that will be deposited in Crossref. The text file is saved in the same folder as the doi_batch
xml file.

Value

A string with the path to the doi_batch xml file.

guri_install Updates/installs the external dependencies necessary for working
~1 3
lguri_.

Description

Upgrade or install (as necessary) pandoc, as well as the latex distribution (tinytex) and latex pack-
ages.

Usage

guri_install(pandoc = T, tinytex = T, force = F)

Arguments

pandoc Logical. Should pandoc be installed/updated? (default "TRUE’)

tinytex Logical. Should tinytex be installed/updated? (default "TRUE’)

force Logical. Should pandoc and tinytex be forced to reinstall? (default "TFALSE’)
Value

Invisible. A list with a logical vector indicating whether tinytex and pandoc are available and two
items with the installed versions of Tinitex and Pandoc.

guri_list_articles 7

guri_list_articles Lists the articles in a journal issue

Description

Lists the articles in a journal issue

Usage

guri_list_articles(path_issue)

Arguments

path_issue String with the path to the issue folder to list the articles in the issue.

Value

A tibble with two columns: articles path (art_path) and articles id (art_id).

guri_make_journal Create the basic file structure for a new journal/journal repository

Description

Create the basic file structure for a new journal or journal repository (to manage multiple journals).

Usage

guri_make_journal(
journal = NULL,
repository = FALSE,
config_options = FALSE,
example = FALSE,
force = FALSE

)
Arguments
journal A string with the short name of the journal. This ’short name’ can contain only
letters, numbers or a low dash (_) and must begin with a letter. Use only if
you will work with the journal repository model (for single journal use NULL,
default value). The journal name ’example’ is not allowed.
repository Logical. Will it work with the journal repository model (Default: FALSE). If

TRUE is chosen, you must set a value for journal (unless example = TRUE) and
a separate folder will be created for each journal. If FALSE the root folder will
contain the files needed to manage your journal.

8 guri_make_journal

config_options Options to generate the configuration files in ’_config’. If FALSE (default), con-
figuration files are not generated in the ’_config’ folder. If "default" or TRUE,
the template and metadata files used by default are copied to the ’_config’ folder
(so that they can be later modified to customise the journal). If it is a named list
with the parameters from guri_config_journal, they will be passed to this func-
tion (e.g. customized = list(csl_name = "chicago-author-date-16th-edition").

example Logical. Do you want to create the journal provided as an example? (Default =
FALSE)
force Logical. Should the journal be generated even if it already exists in the folder?

This will ignore the *.guri’ file if present. (Default: FALSE)

Details

Create the journal folder (if repository TRUE). The journal directory includes a configuration folder
with the files used to configure the journal output (_config) and a folder with the basic files you
will use for the production process (default-files). In addition, the _journal.yaml file will be
generated, which you will have to edit manually with the basic journal data.

The folder structure can contain one journal (repository = TRUE) or multiple journals (repository
= TRUE). Journal repositories allow to manage multiple journals in a single working environment.
The internal structure of the journals within a repository is identical to that of a single journal.

The configuration file features (in _config) can be defined with this function during journal creation
or independently using (see guri_config_journal).

If ’example = TRUE’ a directory of the journal ’example’ (. \example) is created with the necessary
file structure to generate the final output files.

Value

Invisible returns the journal folder.

Examples

Create a folder structure for a new journal.

guri_make_journal (journal = "new_journal”, repository = TRUE)
fs::dir_tree("new_journal”)

unlink("new_journal”, recursive = TRUE)
unlink(".guri")

Create a folder structure for the 'example journal'.

guri_make_journal(example = TRUE, repository = TRUE)
fs::dir_tree("example”, type = "directory")

unlink("example/", recursive = TRUE)
unlink(".guri")

guri_outputs

guri_outputs

Generate output files for selected articles in an issue

Description

For selected articles in an issue, generates output files in pdf, xml-jats and html format. In addi-
tion, it generates auxiliary and log files (see below for details). If doi_batch = TRUE is set, it also
generates a single xml file to do the DOI deposit in Crossref for the selected articles.

Usage

guri_outputs(

art_id,
issue,

journal = NULL,
doi_batch = FALSE,
verbose = TRUE,
clean_files = TRUE

Arguments

art_id

issue

journal

doi_batch

verbose

clean_files

Details

String or vector of strings with the article id to be processed in the issue. If "all"
all articles are processed.

String. The issue folder.

String (optional, mandatory if repository is TRUE). If the journal is not pro-
vided, it is assumed that the working directory is the journal repository. See
guri_make_journal for details.

Logical. If TRUE a doi_batch file is created in the "journal/issue/doi_register’
folder (default FALSE).

Logical. Specifies whether to display verbose output (default TRUE).

Logical. Should the temporary files be deleted and reordered in folders after the
creation of the final files?. Primarily for debugging purposes (default is TRUE).

The function generates the output files for each (selected) article in the issue folder. If art_id is
"all", all articles in the issue folder are processed. The journal parameter is mandatory if it is a
repository of journals, otherwise it will be NULL.

The function generates the following final files for each article:

e art[id].xml: a xml-jats file. See: https://jats.nlm.nih.gov/publishing/
e art[id].html: a html file with the article content.
e art[id].pdf: a pdf file with the article content.

Also, the following auxiliary files are created:

10 guri_to_md

e art[id].md: a markdown file with the article content, used as an intermediate common format
for the conversion to other formats.

e art[id]. tex: atex (latex) file used to generate the pdf.

e art[id]_crossref.xml: a xml file with the single article metadata for Crossref deposit. See:
https://data.crossref.org/reports/help/schema_doc/5.3.1/index.html

* art[id]_biblio. json: ajson file with the article references. Primarily useful for debugging
purposes.

* art[id]_AST.native: the ’abstract syntax tree’ used for Pandoc conversion.
In addition, if clean_files is TRUE, the function will create following folders in the article directory:

» _output: with the final files generated (xml-jats, html and pdf).
» _temp: with the temporary and auxiliary files generated during the process.

* _log: with the log files generated during the process (only present if verbose is TRUE).

If doi_batch = TRUE, the function makes a single xml file (in "journal/issue/doi_register’) with the
metadata of all selected articles to do the DOI deposit in Crossref. An inform file is also created
with the information present in the xml file.

Value

Invisible, a logical vector with the success of the process for each article.

guri_to_md Converts the corrected manuscript between formats.

Description

They convert between the different formats required for the ~!guri_ workflow, applying the appro-
priate lua filters at each stage and using the appropriate templates and metadata. The ~!guri_to_md
function converts between the revised (and formatted) manuscript in docx format to markdown
format. The guri_to_html, guri_to_jats and guri_to_pdf functions convert from the mark-
down file to html, xml (xml-jats) and pdf (tex) formats, respectively. Last, guri_to_AST and
guri_biblio are auxiliary functions that generate a file with the Abstract Syntax Tree (mostly for
debugging purposes) and a file with the references used by the article, respectively.

Usage

guri_to_md(art_path, art_id, verbose = TRUE)

guri_to_html(art_path, art_id, verbose = TRUE)

guri_to_jats(art_path, art_id, verbose = TRUE)
guri_to_pdf(art_path, art_id, verbose = TRUE, pdf = TRUE)

guri_to_crossref(art_path, art_id, verbose = TRUE)

guri_to_md 11

guri_to_AST(art_path, art_id, verbose = TRUE)

guri_biblio(art_path, art_id, bib_type = "csljson")

Arguments
art_path A string with the path to the article folder.
art_id A string with the article id.
verbose Logical. Specifies whether to display verbose output (default TRUE).
pdf Logical. Should the pdf be generated? (default = TRUE)
bib_type description
Details

These functions are, mostly, a wrapper of the internal function guri_convert. The functions are
exported primarily for debugging and error detection purposes. For day-to-day work it is advisable
to use the guri function directly, which coordinates the generation of all these formats and ensures
the correct definition of the parameters.

For the generation of pdf files, LuaTex (tinytex::lualatex) is used internally.

Value

Invisible TRUE

Index

CREDIT_to_CSV, 2

guri, 11

guri_appendix, 3
guri_article, 3
guri_biblio(guri_to_md), 10
guri_clean_files, 4
guri_config_journal, 4, 8
guri_convert, 5, 11
guri_doi_batch, 5
guri_install, 6
guri_list_articles, 5,7
guri_make_journal, 7,9
guri_outputs, 4,9
guri_to_AST (guri_to_md), 10
guri_to_crossref (guri_to_md), 10
guri_to_html (guri_to_md), 10
guri_to_jats (guri_to_md), 10
guri_to_md, 10

guri_to_pdf (guri_to_md), 10

rmarkdown: : pandoc_convert, 5

tinytex::lualatex, 11

12

	CREDIT_to_CSV
	guri_appendix
	guri_article
	guri_clean_files
	guri_config_journal
	guri_convert
	guri_doi_batch
	guri_install
	guri_list_articles
	guri_make_journal
	guri_outputs
	guri_to_md
	Index

